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ABSTRACT 

The value of feedback in the agricultural decision-making process was 
determined by comparison between open and closed loop optimization 
models under different conditions of risk aversion. An optimization via 
simulation of expected utility with dynamic stochastic constraints is deter- 
mined using a mathematical programming routine. As a test case, shrimp 
aquaculture in South Texas is described by a system of stochastic non-linear 
differential equations. Results show that value of  feedback depends on the 
level of risk aversion of the decision maker. Copyright © 1996 Published 
by Elsevier Science Ltd 

I N T R O D U C T I O N  

Agricultural production processes involve considerable uncertainty on the 
part of decision makers (DM). Output from typical agricultural processes 
may depend on randomness in weather fluctuations, growth and mortality 
rates, pests, and viruses. A DM's  economic environment raises the uncer- 
tainty of input costs and output prices as well as questions regarding the 
supply of resources and inputs. Uncertainty associated with production 
processes is revealed in decision time points and consequently affects 
decisions by DMs (Gould, 1974) in an effort to reduce or even avoid 
uncertainty. Many mechanisms are available for agricultural DMs to 
reduce or avoid uncertainty, such as greenhouses to avoid weather fluc- 
tuations, contracting of commodities to buyers to avoid price uncertainty, 
extensive research and development processes to reduce uncertainty about 
production technologies and gathering processing and evaluating infor- 
mation as close as possible to real time. 
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Because agricultural production processes are naturally continuous, 
there are two types of decisions to be considered. Operational type 
decisions to be made and applied continuously, and scheduling type deci- 
sions in a discrete fashion (Jaquette, 1974). The interaction between 
operational and scheduling decisions requires special treatment when 
evaluating available and gathered information. 

As the production process proceeds, feedback may be available and can 
be incorporated into the decision-making process. Then, a mechanism 
determining when, where and how much feedback information should be 
gathered by the agricultural DM is found to be attractive. Feedback is 
available as part of advanced and improved technologies, which are 
developed by agencies and governments via supported research and 
development (Watkins, 1991). Consequently, they are interested in evalu- 
ating feedback at a macro level. 

Decision makers differ in their attitude towards risk. Higher risk aver- 
sion on the part of a DM may lead to different decisions under the same 
level of uncertainty (Hess, 1982). Therefore, the economic value of infor- 
mation may vary between DMs (Chavas & Pope, 1984; Mazzcco, et  al., 
1992). This study focuses on economic evaluation of feedback information 
by comparing performance of an agricultural economic unit under biolo- 
gical uncertainty and dynamic consequences. The operational and sche- 
duling questions are addressed both with and without feedback 
information. Both types of decisions are combined in an optimization 
framework and the economic interpretation of the optimization's results 
are discussed and analysed. 

The natural variability of growth and mortality of the shrimp popula- 
tion in a pond provides an opportune setting for studying the value of 
gathering feedback information and its impact on production (Karp et  al., 
1986; Leung, et  al., 1990). Decisions, such as feeding rate based on this 
variability are of the operational type (Clark, 1976) and decisions about 
when, for how long and the amount of shrimp to stock in a pond are 
scheduling type decisions (Talpaz & Tsur, 1982). Within the shrimp 
industry it is not yet clear how continuous monitoring of the production 
process will affect the DM's utility. 

In the first section of this study a system of stochastic non-linear differ- 
ential equations describes the production process. Stochastic production 
dynamics with respect to both operational (continuous) and scheduling 
(discrete) questions are also formulated. Solutions for DMs with different 
attitudes towards risk are examined and analysed. Solutions use mathe- 
matical and dynamic programming concepts for continuous and discrete 
decisions (Yaron & Dinar, 1982). This formulation allows for capturing the 
contribution of feedback information during the decision-making process. 



Feedback in agricultural decisions 287 

The second section contains an empirical application to shrimp pro- 
duction in South Texas. The above problem is applied to two models: with 
feedback referred to as closed loop (CL) and without feedback referred to 
as open loop (OL). 

In the third section of this investigation the value of the feedback 
information is examined. A run of the model with all stochastic variables 
assigned to their expected values is performed. Optimal solutions of  this 
run are incorporated in a simulation of the two stochastic models allowing 
for different levels of  risk aversions. It is found that feedback information 
attains higher values in the case of more risk-averse DMs. The results are 
provided in explicit utility units. 

THE MODEL 

Consider a product ion process that spans the period to to tf. The state of 
the process at time t is given by the vector x(t) and control variables of  the 
process are given by the vector u(t). There are n scheduling points (tj, 
j =  1,...,n; to<tj<tf;  t j< t j+l )  at which discontinuity in the process may 
occur. There is a batch of  production between two consecutive scheduling 
points, tj-1 and tj, and the process x(t) is assumed to follow stochastic 
differential equations: 

= f J ( x ,  u, t) + G(t)w(t)  (1) 

where f and G are known matrices of  functions and 09(0 is a white noise 
Gaussian variable.Other statistical properties are: 

E [o9(/)] = Uo~ 

COV[to(t), og(s)] = Q(t)6( t  - s) 

E[x(to), X(/o) r] = Vo 

COV[x(/o), w(t)] -- 0 

where Q and V are the variance-covariance of  o9 and x, respectively, and 
is the Kronecker delta function (i.e. ~ = 1 when t = s, and zero otherwi- 
se).The mean pattern of  x( t )  is 

x = f J ( ~ ( t ) ,  u(t), t ) ; j  = 1 . . . .  n. (2) 

where ~(t) is the mean of  x(t).Using a first or second order Taylor 's series 
expansion around ~(t), an approximation to the dynamics of  the covar- 
iance pattern is: 
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(" = fx(~, t)V + Vfx(Y~, t)r + GQG r (3) 

where fx(f~,t) is the Jacobean of f evaluated at x and superscript T stands 
for a transpose sign. For a single variable, Mangel (1985) referred to 
equations (2) and (3) as mean variance algorithms. There is a maintenance 
costs function 1_/{x(t),u(t),t}, associated with the correspondingfJ(x,t). At 
scheduling time points (tjj = 1,2 .... ,n), the state variables obtain different 
values just before and just after decisions are applied, x(tj-) and x(tj.+), 
respectively. The actions may incur costs and create revenues as functions 
of the state variables and time, i.e. 

~b = 4~[X(to), x(t+),, ,  X(tn), x(t+), to,,, tn]. (4) 

Equation (4) gives strategical type costs and revenues, whereas 
lJ{x(t),u(t),t} gives operational type costs. It is assumed that under the 
presence of uncertainty, a DM is interested in maximizing expected von 
Neumann Morgenstern utility from profits over the planning horizon. 

The control optimization framework yields the objective function: 

J(x, to)= max E[U{qb[X(to), x(t+),, ,  x(tn), x(t+), to,,, tn] 

t? 
- ~.~=l ( ! Li(x(t)'u(t)'t)dt) } I x ( t ° ) - - x ° ] '  , 

(5) 

subject to: 

lP[x(to), x(t+),, ,  x(tn), x(t+), to,,, tn] = O, 
(tj, j - 1,,, n; to < tj < tf; tj </j+l) 

(6) 

and equations (2), (3) and (4). The set of constraints ~(.) is a set of 
boundary conditions on the state variables and on the scheduling.When 
no additional information is considered to be gained as the process pro- 
ceeds, an OL framework can be used with i as an approximation to x in 
the function Li{x(t),u(t),t}dt (Bryson & Ho, 1975). This is a non-linear 
constrained optimization problem and a mathematical programming 
approach (Gill & Murray, 1974) can be used for solving optimal values of 
the control variables, and the byproducts used for economic inter- 
pretation. 
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The CL approach is based on a set of observations and the ability to 
update and make decisions as information is gained. Consider a schedule 
of rn observation time points (zk,k = 1,2 ..... m) in which full information 
about the state variables is gained and the variance of the state variables 
vanishes: 

V(Zk) = 0, (Zk, k = 1, 2,, m). (7) 

At an observation time point  Zk, a DM may, for the process from that 
time until the end of  the planning horizon, revise decisions u(t), and change 
the schedules (ti, i=  1,2,...,n) and x(ti-),x(ti+),. . .x(tn-)x(tn +),ti>__zk. 

Equation (5) is valid for any time point t with an appropriate condi- 
tioned vector x. By conditioning on x + dx the functional J(x + dx,t + dt) 
can thus be found. Moreover, the time path (t,tf), on the left hand side of  
equation (5) can be split into time path (t,t + dt) and (t + dt,tf). If the utility 
function U[.] is separable, so that it can be a function of  J(x + dx,t + dt), 
then by extrapolating from equation (5): 

t+dt 

t 

where i is an approximation to x in the functional Li{x(t),u(t),t}dt}, and 
/4[-] is a transformation of  U[.]. At time point Zk, the value of x is known, 
yet dx is a random vector.Equation (8) serves as the recursive functional in 
dynamic programming terminology. Boundary conditions are 4~[x(tf)]; the 
revenues from a state level x on the last day of  the planning horizon. 

Finding an analytical solution to equation (8) is a difficult task and is 
possible only in the case of  specific functional forms and particular prob- 
ability distributions. The recursive property of  equation (8) and Bellman's 
Optimality Criteria can be used in order to solve backward from time 
point zm until z 1. For any observation time point  zk, various J(x,zk) are 
computed for different x, and an interpolation is made in order to get a 
functional form of J(x,zk) with respect to the vector x. The functional 
J(x,zk) are introduced into equation (8) for solving for J(x,zk-1). This 
procedure is repeated until z~. 

Two objective functions have been determined. Equation (5) acts as the 
objective function in the case of an OL framework with no feedback. 
Equation (8) is extrapolated from equation (5) to act as the objective 
function in the CL framework with available feedback. 
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APPLICATIONS 

The model can be applied to many agricultural branches in which a pro- 
duction over time is associated with uncertainty. Operational type deci- 
sions can be updated as a result of gaining information about the 
production process. For example, irrigation of field crops with low quality 
water, feeding milk cows, preparing silage for feeding livestock, etc. In 
these cases, research and development processes may result in production 
technologies with less uncertainty. The economic motivation to conduct 
such effort can be quantified by this model. The case study of this work is 
based on a branch of aquaculture due to the ability to transfer production 
technologies and know-how from one place to another, by modifying the 
relevant, functional forms and parameters. 

OL and CL decision models are applied to the management of a shrimp 
farm in Texas. The growing season of shrimp in ponds is limited to 33 
weeks a year from early April to late November due to weather condi- 
tions. Management problems faced by DMs include: how many crops to 
produce per growing season (scheduling), size and amount of shrimp to 
stock (x(ti+)), and the optimal rate of feeding (u) (operating). Scheduling 
point decisions ( t i ,  i = 1,2 ..... n) are made at the beginning of a growing 
season and include number of crops, amounts to stock and harvest times. 
Operational decisions include the feeding of the shrimp in ponds. 

Feedback for the decisions may be obtained by observing the ponds on 
decision days. It is assumed that experienced farmers use the information 
from the observations to estimate precisely the biomass in the pond x(t,.-). 
In this study, observation days are every seven weeks; that is, z l=7 ,  
z2 = 14, z3=21, and z4=28. On every observation day (the last day of a 
week), scheduling of up to five additional crops is tested from that day till 
the end of the growing season (/= 1,2,,,5). These parameters and options 
are chosen because they are relevant for this case study. The number of 
observation points of time and the corresponding number of decisions can 
easily be increased. 

Functional forms 

The vector x has two components: wt, the size in grams of an individual 
shrimp and qt ,  the quantity of shrimp in a I acre pond. There is random- 
ness around shrimp growth rate and mortality rate over time; conse- 
quently, biomass level on a given day is not known with certainty. 

The function f(-) from equation (I) is built from a two-component vector: 

= [w, ql 
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gyp = wpcbe(-CO e (dwq) 

= - h e  (-f ' )  + kq 

¢v = grip (9) 

where fi~p is the potential rate of  growth, b, c, d, f ,  h, and k are coefficients 
and g is a number  between 0 and 1 describing the desired growth rate.- 

Variable costs associated with maintenance and growth of  shrimp 
mostly consist of  the costs of  feeding: 

L[x, u, t] ---- q( t )HT(w °75 + lw) (P f /CI )  (10) 

where P f i s  unit price of  feed and CI is a conversion coefficient index from 
kilo-calories to kilograms of  feed. The parameter  I is the impact of  shrimp 
weight gain on energy intake; HT is the impact of  temperature  on energy 
intake and q(t) is the number  of  shrimp. The costs of  juvenile shrimp for 
stocking are fixed for the farmer. The market  price of  shrimp is related to 
its size and season of  the year. The impact of  time on the unit price is 
crucial because shrimp size is proport ional  to its time in the pond and the 
unit price goes up accordingly. The price of  an individual shrimp is a 
function of  season and shrimp size: 

wq-' 
h(w)=v I +  e_-J7 ~ -j ( I I )  

where time zero is the beginning of  April. The parameters  are v, p, s and 
wo. More  information on the functions of  the applied case can be found in 
Sadeh (1986). Dynamics  o f  the variance-covariance of  x are captured by 

G(t) = Gt °5 (12) 

where G is a matrix of  coefficients. The impact o f  time on the variance is 
on the increase but at a decreasing rate.The parameters  specified by 
equations (3) and (9) were estimated using experimental  data  from six 
ponds in South Texas 1. The implied growth path  was subjectively judged 
to be representative by industry experts. 

lThe  estimated coefficients are: a = 43.3, c = -0.094, h =-253.0, f = - 0 . 0 1 4 ,  k =-0.0063, 
h ll = 0" 102, ht2 = 0-236 and h22 = 0-586. Where a is an asymptotic weight of shrimp and it is 
given in a solution of the differential equations. The coefficient b is calculated based on the 
other coefficients. More about the data and the estimation procedure can be found in 
Sadeh (1986). 
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For operating type decisions a farmer assumes that biomass is at its 
expected value and feeds shrimp accordingly. The impact of  the random 
variable, biomass to be harvested from ponds ( x ( t i - ) i  = 1,...,n) is con- 
sidered on scheduling days. Consequently, although the state variables 
x(t;) are subject to uncertainty, the x(t) in the loss (cost) function are 
considered to be at their expected values. 

A risk-neutral DM maximizes the expected profits from a pond. Yet, a 
von Neumann Morgenstern utility function with an exponential func- 
tional form is chosen to describe the farmer's attitude towards increasing 
uncertainty as 

U(zr) = b(1 - e-'~). (13) 

For the OL model, equation (5) gives the optimization rule with respect to 
control variables u, where x is the random variable for which the expec- 
tation operation is referred. The value of a in the exponential utility 
function was set by inspecting many values of a in the interval [0.000009, 
0-01], and the parameter b=  1000 was chosen arbitrarily. For relatively 
large values of a, the exponential utility function is concave; it reaches the 
asymptotic line b quickly. The optimal objective value for an OL model, 
with respect to increasing a, is a unimodal function getting its maximum 
value (79.5) at a = 0.000045 and minimum value zero ("do nothing"). For 
small values of a, one crop is found to be the optimal policy. At 
a=0.000098, a two crop policy is optimal, whereas for a>0.00014 "do 
nothing" is the optimal policy. Along with a risk-neutral DM situation, 
two different values of a were chosen to represent the effect of risk aver- 
sion of the DM: a=0-00005, and a=0.0001.The recursive equation for 
this CL model is given by substitution into equation (8): 

J(x, t) = max E[b(1 - e - a ~  + J(x + dx, t + d t )e  -a~a] (14) 
U 

where rid is the profit gained from time t up to t + dt, and J(x + dx,t + dt) is 
the optimal value for x + dx from t + d t  until the end of the planning hor- 
izon. At time t, the variables rrd and (x + dx) are random and the operator 
El.] is related to them.Bellman's optimality principle is applicable here. 
Consequently, the dynamic programming approach and the convergence 
of the optimum algorithm for separate decisions are assured. At a given 
point of time t, the state variable x(t) is known with certainty, and a DM 
takes the best action regardless of what occurred prior to time t. If the 
function J (x , t )  is concave with respect to the decision variable (u), then the 
optimal solution can be found regardless of previous decisions. 
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At time t + dt, J(x + dx,t + dt) was found for many possible x + dx 
values, and a quadratic form was used to obtain a smooth functional form 
for all other possibilities that have not been simulated: 

J(x + dx, t + dt) = a0 + al(w + dw) + a2(q + dq) + a3(w + dw) 2 

+ a4(O 4- dq) 2 + as(# + dw)(q + dq). 
(15) 

The expectation part in equation (14) can be approximated by a Taylor's 
series expansion around E[na] and E[x + dx]. It contains three parts: (i) its 
evaluation at the mean of na and (x + dx); (ii) its second derivative with 
respect to na multiplied by half of the variance of ha; and (iii) its second 
derivative with respect to (x + dx) multiplied by half of the variance of 
(x + dx). There is no correlation between nd and (x + dx). The approx- 
imation of equation (14) is: 

E[.] = b(1 - e -a~) + J(f~ + df~, t + dt)e-a~ + a2e-a~[J(f~ + df~, t + dt) 

- b]- 0.5Var(n-a) + e -~ (a3  Vjl + a41/22 -t- a5 V12) 
(16) 

where V o. are elements in the computed variance-covariance matrix of 
vector (x+ dx). The second derivative of J(x + d x , t +  dt) is easily inter- 
preted from the quadratic approximation of J ( x + d x , t + d t )  provided 
above.The computation of approximation to the expected value of n', as 
well as the variance of 7r, are given in Sadeh (1986). To avoid numerical 
difficulties, several conditions are set during simulation and optimization. 
It is always required that 

0 
{ - >__ 0 (17) 

which is satisfied by the assumption of concavity of U(n). Also, the var- 
iance covariance matrix should be positive definite: Vll> 0, 11122 > 0 and 
VI1 V22- VI22 > 0. 

RESULTS 

Seven runs (i-vii) with variation in levels of risk aversion and presence of 
feedback are presented in Table 1. Table 1 also contains the optimal 
number of crops, the optimal number of crops per growing season, the 
optimal values of decision variables, their corresponding shadow prices 
and objective values. Values of selected variables on harvest days are 
presented in Table 2. 
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The decision variables stocking size, stocking density and feeding policy 
are at their upper boundary values in all runs. Time of harvest, however, 
generally varies between runs. Results therefore, are compared in the 
number of crops, the cultivation length of these crops and the corre- 
sponding shadow prices of decision variables. 

The first optimization run was performed on the current problem with 
all random variables assigned to their expected values, with no variance 
considered. Under conditions of run (i), one crop was found to be the 
optimal solution. The objective value is 6259 utility units and the crop is 
cultivated for the entire growing season (33 weeks). 

Risk neutral 

Under risk neutral assumptions, an OL model was run (ii) and expected 
utility is maximized. This particular run results in 4255 utility units and 
with decision variables at their boundary level. A positive covariance 
between the size and number of shrimp has positive impact on expected 
profits, whereas the variance of shrimp size has the opposite impact. 
Because the impact of the covariance is greater than the impact of the 
variance of size, the optimal harvest day is at the upper bound of the 
growing season constraint. 

Under the economic conditions stated above, the decision variables 
stocking size, stocking density, feeding policy and harvest time have a 
positive impact on the general economic performance of one shrimp pond. 
Yet, the first three factors contribute less uncertainty than the harvest time 
by increasing the cultivation period of shrimp. Therefore, the tendency to 
increase output under uncertainty has more pressure towards increasing 
stocking size and stocking density of shrimp as it is revealed by the sha- 
dow prices. 

A risk-neutral DM will take the most risky prospect under the condi- 
tions of this run. That is, to have a single crop with the maximum growing 
period without additional information or feedback during the growing 
period. 

When feedback is available a CL model was run (iii) with resulting small 
variance-covariance of state variables. Therefore optimal decisions are at 
their upper bounds as in run (i). The objective value is higher (6383 utility 
units) than in the OL model run (ii). The shadow price of stocking size is 
(499.3) smaller than (1456.3) of the OL model run (ii). The opposite holds 
for the harvest day. The tendency to produce leads DM more towards 
increasing initial size than increasing the cultivation period of a crop. 
Under the conditions of run (iii) the uncertainty is much smaller than 
uncertainty resulting under run (ii) conditions, and there is more pressure 
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towards increasing the growing season. Increasing the growing season is 
possible with different technologies such as greenhouses, and consequently 
requires more investment. 

Low risk aversion 

For a DM with risk coefficient a = 0.00005, one crop is optimal in both the 
OL and CL model runs (iv and v). The one-crop policy resulting from the 
OL (iv) is sub optimal to the solution of  run (i). Because the crop is 
scheduled for only 29.7 weeks rather than the entire growing season of  33 
weeks. This change in the scheduling is due to the variance gained in the 
last few weeks of  the crop and the level of risk aversion. 

The solution of CL model run (v) is similar to the run (i) solution. The 
expected full information from the four observation days is very close to 
conditions of  certainty under these run conditions. 

A DM under OL model conditions (iv) can produce only one crop in a 
growing season, but with 29.7 weeks cultivation period. The contribution 
of  the information to be gained under CL model conditions (v) allows 
DMs to expand the cultivation period from 29.7 to the maximum possible 
length of  33 weeks. 

The objective value in run (iv) is 78-5 utility units and 252.2 utility units 
in run (v). As mentioned above, this is consistent with a priori expecta- 
tions. The lower variance and thus longer cultivation period in run (v) 
account for the increased utility units. For the risk averse DM, feedback 
information enhances utility. 

High risk aversion 

A DM with risk coefficient a=0.0001 is more risk-averse, and the role of  
variance is very crucial. In the OL model run (vii), the DM prefers a two- 
crop policy with less variance at the end of  each crop than one crop with 
higher variance (Table 2). A high risk averse DM cannot bear the uncer- 
tainty associated with a single crop and he would rather split the growing 
season into two short cultivation periods of  about 16 weeks each. Because 
the two-crop policy is inefficient under conditions of  run (i), the DM is 
ready to offset economic efficiency by not bearing uncertainty. 

Under  the CL model run (vii) the DM prefers a single-crop policy to a 
two-crop policy. However, the cultivation period is 2-4 weeks short of  the 
33 weeks of run (i). The effect of  increased variance shortened the length 
of  the cultivation period. 

The shadow price of  stocking size is greater in the OL model run (vi) 
than in the CL model run (vii). The opposite is true for the shadow price 
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of stocking density. The two-crop policy in (vi) does, however, increase the 
need for large initial shrimp sizes due to the shorter growth period per 
crop. In the case of stocking density, the opposite occurs, due to the length 
per crop, the shadow prices of number of shrimp are smaller in run (vi) 
than in run (vii). 

It is interesting that, in the OL model run (vi), the biomass of shrimp in 
a two-crop policy totals to 1291 kg, which is more than the biomass of the 
CL model run (vii) (1061 kg) and more than the biomass of  run (i) 
(1093 kg). The quality of shrimp, however, is judged by size. Shrimp size, 
as well as biomass, is an important factor affecting the objective function. 
There is a sharp decrease in actual shrimp size upon marketing when the 
season is split into two crops (vi). Although, in general, farmers prefer less 
product with higher quality, a highly risk-averse DM will give up quality 
for less variance. 

Value of information 

The models developed previously can be used to determine the value of 
information concerning the distribution of random variables associated 
with shrimp growth and mortality. The methodology of calculating such 
values is based on an assumption that although being in a stochastic 
environment and not knowing the distributions, a DM repeatedly applies 
optimal decisions of a run where only expected values are considered. 
Knowledge of the amount that a DM is willing to pay for knowing the 
distribution of the random variables may lead to better research and 
development programmes, and relevant efforts concerning learning curves 
of new industries. It is expected that the attitude of a DM towards risk 
and the nature of technology (with and without feedback) will affect the 
amount that the DM is willing to pay for information. 

In order to determine the effect of lack of feedback information, optimal 
decisions from run (i) are applied in a stochastic model, and a path is 
simulated. This simulated path gives a scenario of having a stochastic 
environment without knowing the distribution behind its random vari- 
ables. The difference between sub-optimal results from the simulations 
and those obtained by stochastic optimization can be interpreted as the 
value of information of knowing the distribution of random variables in a 
stochastic environment. This method is a special case of treating a cer- 
tainty equivalence model as a case of no uncertainty (Karp et  al., 1986). 

These differences provide grounds for comparative study. Such a system 
allows us to compare the relative losses due to lack of feedback informa- 
tion on the state of the random variables. Contrasting relative losses in 
both the OL and CL models gives a more accurate picture of the value of 
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information than the use of  unadjusted objective function values. Results 
of this method of  information evaluation are found in Table 1 in the col- 
umn: simulation of  a stochastic run. 

There is no loss of utility for a risk-neutral DM in runs (ii) and (iii), as 
the decisions he applies in the stochastic OL and CL models are the same 
as those in run (i). This is not a general conclusion, but a result for these 
particular runs. 

For  a low risk-averse DM, very small losses do occur by applying opti- 
mal decisions of  run (i) in the stochastic environment. This is consistent 
with a priori  expectations, as the differences between the values of  the 
decision variables under the low-risk producers are very similar to those of 
run (i). The slight lengthening of  the cultivation period, and thus increased 
ending variance under run (i) rules accounts for the utility loss. 

Runs for the highly risk-averse DM yield the most interesting results. 
When optimal decisions of run (i) are applied in a stochastic environment 
without feedback, -30.3 utility units are incurred compared to +32.3 
units of  run (vi). This relatively large loss is clearly due to the difference 
between one-crop and two-crop policies as recommended by run (i) and 
run (vi), respectively. The difference, 62.6 utility units, is interpreted as the 
amount  of  utility that a DM is willing to give up for knowing the prob- 
ability distribution of  random variables in the model. 

Using optimal decisions of  run (i) in the CL model run with a highly 
risk-averse DM results in a slight loss in utility (7-4=418.0-410-6). The 
reason for the low magnitude of this loss is due to the small deviation 
between results of  run (i) and results of  run (vii) as computed for these 
particular runs. 

Conclusions of the results 

As per a priori  expectations, the contrast between the OL and CL models is 
shown in the increasing objective function values (Table 1) and decreased 
variance levels of  the state variables under CL model  runs with feedback 
(Table 2). With respect to OL models, decreased variance in the CL models 
leads to a lengthening of  the cultivation period for risk-averse DMs. The 
decisions relative to time of  harvest (TH) varies among the runs (Table 1). 

Risk aversion has a strong impact on shrimp aquaculture. The impact of  
variance is substantial. Boundary conditions on the length of  the growing 
season yield positive but rather small shadow prices for a risk-neutral 
DM. For  a risk-averse DM, the suggested cultivation period is less than 
the maximum possible. In preliminary runs of  the models, it is found that 
under extreme levels of  risk aversion (risk coefficients greater than 
0-00014) a DM chooses not to produce. 
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Under the assumption of a highly risk-averse DM, there is a switch to a 
two-crop policy for the OL model run (vi). In this case, the CL model run 
(vii) shows a significantly higher value for the objective function. This is 
due to the high concavity of the utility function and the massive reduction 
in variance in the CL model runs with feedback. 

Shrimp quality also has an impact on decision making under uncer- 
tainty. It was found that a DM agrees to bear more risk in order to have a 
better quality product. For example, in the one-crop scenario (Table 2; vii) 
individual marketable shrimp are 26.5 g and the total marketable biomass 
1061 kg vs. 13.5 or 13 g marketable shrimp and 1291 kg marketable bio- 
mass in a two-crop scenario (vi). 

Simulation of optimal decisions from run (i) in a stochastic environment 
reflects the value of knowledge of the system's probability distribution of 
random variables. The findings show that the DM's willingness to pay for 
information on the random variables corresponds to his level of risk aver- 
sion. Major differences, however, came through different policies rather 
than through different tactical decisions, e.g. differences in time of harvest. 

SUMMARY 

The model was developed as a tool to encompass operational and man- 
agement decisions in agricultural systems under conditions of uncertainty. 
A DM facing production uncertainty over time has the alternative to 
update decisions as information is gathered over time. The case study is 
shrimp aquaculture, but with appropriate modifications it can be applied 
to different disciplines in agriculture. 

The model is applied for five decision points of time in this case study. 
Increasing the number of decision points of time is easily applicable with 
moderate increase of computation time for relevant problems. 

An economic interpretation of the results is attractive and possible due 
to the mathematical programming formulation of the model. The results 
are quantified in terms of utility units. It is found that a risk-averse DM 
tends to split production processes in order to avoid uncertainty. In 
shrimp aquaculture this means increasing the number of crops per grow- 
ing season and shortening the cultivation period of each crop. A run with 
random variables at their expected values provides the ground for optimal 
riskless decisions. The difference in optimal decisions between the various 
risk-averse DMs with respect to that run's results means that some DMs 
may be inefficient and therefore may not enter the shrimp industry. 

The information gathered as the production process proceeds is eval- 
uated. The implications of the value of feedback information can be used 



Feedback in agricultural decisions 301 

in evaluating possible investments in agriculture. An individual DM will- 
ing to pay money or to give up utility units for knowing the distributions 
of  random variables associated with agricultural production processes, 
may lead to better research and development programmes and relevant 
efforts concerning learning curves of  agricultural industries. 

R E F E R E N C E S  

Bryson, A. E. & Ho, Y. (1975). Applied Optimal Control. John Wiley & Sons, 
New York, USA. 

Chavas, J. P. & Pope, R. D. (1984). Information: Its Measurement and Valua- 
tion. American Agricultural Economics Association Annual Meeting, USA. 

Clark, C. E. (1976). Mathematical Bioeconomics: The Optimal Management of 
Renewable Resources. John Wiley & Sons, New York, USA. 

Gill, P. E. & Murray, W. (1974). Numerical Methods for Constrained Optimiza- 
tion. Academic Press, New York, USA. 

Gould, J. P. (1974). Risk, stochastic preference. Journal of Economic Theory, 8, 
64-84. 

Hess, J. (1982). Risk and the gain from information. Journal of Economic Theory, 
27, 231-238. 

Jaquette, D. L. (1974). A discrete time population-control model with setup cost. 
Operations Research, 22, 298-303. 

Karp, L., Sadeh, A. & Griffin, W. L. (1986). Cycles in agricultural production: 
the case of aquaculture. American Journal of Agricultural Economics, 68, 553- 
561. 

Leung, P. S., Hochman, E., Rowland, L. W. & Wyban, J. A (1990). Modeling 
shrimp production and harvesting schedules. Agricultural Systems, 32, 233- 
249. 

Mangel, M. (1985). Decision and Control in Uncertain Resource Systems. Aca- 
demic Press, New York, USA. 

Mazzcco, M. A., Mjelde, J. W., Sonk, S T., Lamb, P. J. & Hollinger, S. E. (1992). 
Using hierarchical system aggregation to model the value of information in 
agricultural systems: an application for climate forecast. Agricultural 
Systems, 40, 393-412. 

Sadeh, A. (1986). Value of Information in Dynamic Production Processes: the 
Case of Aquaculture. Unpublished PhD Dissertation, Texas A&M Uni- 
versity, USA. 

Talpaz, H. & Tsur, Y. (1982). Optimizing aquaculture management of a single- 
species fish population. Agricultural Systems, 9, 127-142. 

Watkins, T. A. (1991). A technological communications costs model of R&D 
consortia as public policy. Research Policy, 20, 87-107. 

Yaron, D. & Dinar, A. (1982). Optimal allocation of irrigation water on a farm 
during peak season. American Journal of Agricultural Economics, 64, 681- 
684. 


