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ABSTRACT

The value of feedback in the agricultural decision-making process was
determined by comparison between open and closed loop optimization
models under different conditions of risk aversion. An optimization via
simulation of expected utility with dynamic stochastic constraints is deter-
mined using a mathematical programming routine. As a test case, shrimp
aquaculture in South Texas is described by a system of stochastic non-linear
differential equations. Results show that value of feedback depends on the
level of risk aversion of the decision maker. Copyright © 1996 Published
by Elsevier Science Ltd

INTRODUCTION

Agricultural production processes involve considerable uncertainty on the
part of decision makers (DM). Output from typical agricultural processes
may depend on randomness in weather fluctuations, growth and mortality
rates, pests, and viruses. A DM’s economic environment raises the uncer-
tainty of input costs and output prices as well as questions regarding the
supply of resources and inputs. Uncertainty associated with production
processes is revealed in decision time points and consequently affects
decisions by DMs (Gould, 1974) in an effort to reduce or even avoid
uncertainty. Many mechanisms are available for agricultural DMs to
reduce or avoid uncertainty, such as greenhouses to avoid weather fluc-
tuations, contracting of commodities to buyers to avoid price uncertainty,
extensive research and development processes to reduce uncertainty about
production technologies and gathering processing and evaluating infor-
mation as close as possible to real time.
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Because agricultural production processes are naturally continuous,
there are two types of decisions to be considered. Operational type
decisions to be made and applied continuously, and scheduling type deci-
sions in a discrete fashion (Jaquette, 1974). The interaction between
operational and scheduling decisions requires special treatment when
evaluating available and gathered information.

As the production process proceeds, feedback may be available and can
be incorporated into the decision-making process. Then, a mechanism
determining when, where and how much feedback information should be
gathered by the agricultural DM is found to be attractive. Feedback is
available as part of advanced and improved technologies, which are
developed by agencies and governments via supported research and
development (Watkins, 1991). Consequently, they are interested in evalu-
ating feedback at a macro level.

Decision makers differ in their attitude towards risk. Higher risk aver-
sion on the part of a DM may lead to different decisions under the same
level of uncertainty (Hess, 1982). Therefore, the economic value of infor-
mation may vary between DMs (Chavas & Pope, 1984; Mazzcco, et al.,
1992). This study focuses on economic evaluation of feedback information
by comparing performance of an agricultural economic unit under biolo-
gical uncertainty and dynamic consequences. The operational and sche-
duling questions are addressed both with and without feedback
information. Both types of decisions are combined in an optimization
framework and the economic interpretation of the optimization’s results
are discussed and analysed.

The natural variability of growth and mortality of the shrimp popula-
tion in a pond provides an opportune setting for studying the value of
gathering feedback information and its impact on production (Karp et al.,
1986; Leung, et al., 1990). Decisions, such as feeding rate based on this
variability are of the operational type (Clark, 1976) and decisions about
when, for how long and the amount of shrimp to stock in a pond are
scheduling type decisions (Talpaz & Tsur, 1982). Within the shrimp
industry it is not yet clear how continuous monitoring of the production
process will affect the DM’s utility.

In the first section of this study a system of stochastic non-linear differ-
ential equations describes the production process. Stochastic production
dynamics with respect to both operational (continuous) and scheduling
(discrete) questions are also formulated. Solutions for DMs with different
attitudes towards risk are examined and analysed. Solutions use mathe-
matical and dynamic programming concepts for continuous and discrete
decisions (Yaron & Dinar, 1982). This formulation allows for capturing the
contribution of feedback information during the decision-making process.
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The second section contains an empirical application to shrimp pro-
duction in South Texas. The above problem is applied to two models: with
feedback referred to as closed loop (CL) and without feedback referred to
as open loop (OL).

In the third section of this investigation the value of the feedback
information is examined. A run of the model with all stochastic variables
assigned to their expected values is performed. Optimal solutions of this
run are incorporated in a simulation of the two stochastic models allowing
for different levels of risk aversions. It is found that feedback information
attains higher values in the case of more risk-averse DMs. The results are
provided in explicit utility units.

THE MODEL

Consider a production process that spans the period ¢, to ¢ The state of
the process at time ¢ is given by the vector x(¢) and control variables of the
process are given by the vector u(?). There are n scheduling points (;,
J=hoony ,<4;<ts; t;<tj+;) at which discontinuity in the process may
occur. There is a batch of production between two consecutive scheduling
points, t;_; and #;, and the process x(t) is assumed to follow stochastic
differential equations:

x = f/(x,u, ) + G(Dw(t) (1)

where fand G are known matrices of functions and w(¢) is a white noise
Gaussian variable.Other statistical properties are:

Elw()] = o
COV[a(1), w(s)] = Q(D)d(t — 5)
E[x(to), x(1o) 1 = V,
COV[x(t), w(6)] =0
where Q and V are the variance—covariance of w and x, respectively, and &

is the Kronecker delta function (i.e. §=1 when t=s, and zero otherwi-
se). The mean pattern of x(¢) is

X = fI&x@,u(r), 0;j= 1, ...n. )

where X(¢) is the mean of x(#).Using a first or second order Taylor’s series
expansion around X(?), an approximation to the dynamics of the covar-
iance pattern is:
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V= fuX, OV + Vi(x, 0T + GQGT A3)

where f,(X,t) is the Jacobean of f evaluated at x and superscript T stands
for a transpose sign. For a single variable, Mangel (1985) referred to
equations (2) and (3) as mean variance algorithms. There is a maintenance
costs function L/ {x(?),u(?),t}, associated with the corresponding f/(x,?). At
scheduling time points (#,,/=1,2,...,n), the state variables obtain different
values just before and just after decisions are applied, x(¢,7) and x(z;*),
respectively. The actions may incur costs and create revenues as functions
of the state variables and time, i.e.

¢ = BIX(1,), X(1)). ., X(5), X(5)): Lo, » , ta)- 4)

Equation (4) gives strategical type costs and revenues, whereas

L/{x(H),u(?),t} gives operational type costs. It is assumed that under the

presence of uncertainty, a DM is interested in maximizing expected von

Neumann Morgenstern utility from profits over the planning horizon.
The control optimization framework yields the objective function:

J(x, 1) = max EI:U[db[x(t;), X(£D), ., x(£,), X(£), 15, , , tn)

o )
-y ( J Li(x(), (o), t)dt) ]lx(zo) = xa]
i=1 \ ¢

i-1
subject to:

W[X(t;), X(t:), ’ X([;), X([:), Loy s tn] = O,

. ©)
(=1, mt, <4< t5 8 < t41)

and equations (2), (3) and (4). The set of constraints (-) is a set of
boundary conditions on the state variables and on the scheduling.When
no additional information is considered to be gained as the process pro-
ceeds, an OL framework can be used with X as an approximation to x in
the function L{x(¢),u(z),t}dt (Bryson & Ho, 1975). This is a non-linear
constrained optimization problem and a mathematical programming
approach (Gill & Murray, 1974) can be used for solving optimal values of
the control variables, and the byproducts used for economic inter-
pretation.
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The CL approach is based on a set of observations and the ability to
update and make decisions as information is gained. Consider a schedule
of m observation time points (zx,k=1,2,...,m) in which full information
about the state variables is gained and the variance of the state variables
vanishes:

V(zi) =0, (zk, k= 1,2, , m). @)

At an observation time point z;,, a DM may, for the process from that
time until the end of the planning horizon, revise decisions u(f), and change
the schedules (¢;,i=1,2,...,n) and x(¢;7),x(¢;7),..x(6,)X(t, 1), ;> 2.

Equation (5) is valid for any time point ¢ with an appropriate condi-
tioned vector x. By conditioning on x + dx the functional J(x +dx,r+d¢)
can thus be found. Moreover, the time path (7,¢), on the left hand side of
equation (5) can be split into time path (¢, +df) and (¢ +d¢,z)). If the utility
function U['] is separable, so that it can be a function of J(x +dx,z+ds),
then by extrapolating from equation (5):

t+dt

Jx, = max E[ Hlo() — J L(:)ds, J(x + dx, t + do)]|x(2) = x, (8)

!

where X is an approximation to x in the functional L{x(¢),u(¢),t}d¢}, and
H[] is a transformation of U[-]. At time point z, the value of x is known,
yet dx is a random vector.Equation (8) serves as the recursive functional in
dynamic programming terminology. Boundary conditions are ¢[x(z/)]; the
revenues from a state level x on the last day of the planning horizon.

Finding an analytical solution to equation (8) is a difficult task and is
possible only in the case of specific functional forms and particular prob-
ability distributions. The recursive property of equation (8) and Bellman’s
Optimality Criteria can be used in order to solve backward from time
point z,, until z,. For any observation time point z,, various J(X,z;) are
computed for different x, and an interpolation is made in order to get a
functional form of J(x,z;) with respect to the vector x. The functional
J(x,z;) are introduced into equation (8) for solving for J(x,zx_,). This
procedure is repeated until z,.

Two objective functions have been determined. Equation (5) acts as the
objective function in the case of an OL framework with no feedback.
Equation (8) is extrapolated from equation (5) to act as the objective
function in the CL framework with available feedback.
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APPLICATIONS

The model can be applied to many agricultural branches in which a pro-
duction over time is associated with uncertainty. Operational type deci-
sions can be updated as a result of gaining information about the
production process. For example, irrigation of field crops with low quality
water, feeding milk cows, preparing silage for feeding livestock, etc. In
these cases, research and development processes may result in production
technologies with less uncertainty. The economic motivation to conduct
such effort can be quantified by this model. The case study of this work is
based on a branch of aquaculture due to the ability to transfer production
technologies and know-how from one place to another, by modifying the
relevant, functional forms and parameters.

OL and CL decision models are applied to the management of a shrimp
farm in Texas. The growing season of shrimp in ponds is limited to 33
weeks a year from early April to late November due to weather condi-
tions. Management problems faced by DMs include: how many crops to
produce per growing season (scheduling), size and amount of shrimp to
stock (x(#;%)), and the optimal rate of feeding (u) (operating). Scheduling
point decisions (;,i=1,2,...,n) are made at the beginning of a growing
season and include number of crops, amounts to stock and harvest times.
Operational decisions include the feeding of the shrimp in ponds.

Feedback for the decisions may be obtained by observing the ponds on
decision days. It is assumed that experienced farmers use the information
from the observations to estimate precisely the biomass in the pond x(#;,7).
In this study, observation days are every seven weeks; that is, z;,=7,
z,=14, z3=21, and z4=28. On every observation day (the last day of a
week), scheduling of up to five additional crops is tested from that day till
the end of the growing season (j=1,2,,,5). These parameters and options
are chosen because they are relevant for this case study. The number of
observation points of time and the corresponding number of decisions can
easily be increased.

Functional forms

The vector x has two components: w,, the size in grams of an individual
shrimp and g¢,, the quantity of shrimp in a 1 acre pond. There is random-
ness around shrimp growth rate and mortality rate over time; conse-
quently, biomass level on a given day is not known with certainty.

The function f{-) from equation (1) is built from a two-component vector:

x = [w, 4]
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W, = wychel =V eld)
g =—he™ +kq
W = g, )

where wy, is the potential rate of growth, b, ¢, d, f, h, and k are coefficients
and g is a number between 0 and 1 describing the desired growth rate.-

Variable costs associated with maintenance and growth of shrimp
mostly consist of the costs of feeding:

Lix, u, 1] = g(OHTW*” + Iw)(Pf/CI) (10)

where Pf is unit price of feed and ClI is a conversion coefficient index from
kilo-calories to kilograms of feed. The parameter / is the impact of shrimp
weight gain on energy intake; HT is the impact of temperature on energy
intake and ¢(¢) is the number of shrimp. The costs of juvenile shrimp for
stocking are fixed for the farmer. The market price of shrimp is related to
its size and season of the year. The impact of time on the unit price is
crucial because shrimp size is proportional to its time in the pond and the
unit price goes up accordingly. The price of an individual shrimp is a
function of season and shrimp size:

(an

o
e—stP

-1
h(w) = v[l +1"_’L_*_W_f]

where time zero is the beginning of April. The parameters are v, p, s and
w,. More information on the functions of the applied case can be found in
Sadeh (1986). Dynamics of the variance—covariance of x are captured by

G(1) = G*3 (12)

where G is a matrix of coefficients. The impact of time on the variance is
on the increase but at a decreasing rate.The parameters specified by
equations (3) and (9) were estimated using experimental data from six
ponds in South Texas'. The implied growth path was subjectively judged
to be representative by industry experts.

'The estimated coefficients are: a=43-3, c= —0.094, h=—-253.0, f=—0-014, k= —0-0063,
hyy=0-102, hy3=0-236 and h;,=0-586. Where a is an asymptotic weight of shrimp and it is
given in a solution of the differential equations. The coefficient b is calculated based on the
other coefficients. More about the data and the estimation procedure can be found in
Sadeh (1986).
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For operating type decisions a farmer assumes that biomass is at its
expected value and feeds shrimp accordingly. The impact of the random
variable, biomass to be harvested from ponds (x(¢,7)i=1,...,n) is con-
sidered on scheduling days. Consequently, although the state variables
x(¢;) are subject to uncertainty, the x(#) in the loss (cost) function are
considered to be at their expected values.

A risk-neutral DM maximizes the expected profits from a pond. Yet, a
von Neumann Morgenstern utility function with an exponential func-
tional form is chosen to describe the farmer’s attitude towards increasing
uncertainty as

Urn) = b(1 — ™). (13)

For the OL model, equation (5) gives the optimization rule with respect to
control variables u, where x is the random variable for which the expec-
tation operation is referred. The value of a in the exponential utility
function was set by inspecting many values of a in the interval [0-000009,
0-01], and the parameter b= 1000 was chosen arbitrarily. For relatively
large values of a, the exponential utility function is concave; it reaches the
asymptotic line b quickly. The optimal objective value for an OL model,
with respect to increasing a, is a unimodal function getting its maximum
value (79-5) at a=0-000045 and minimum value zero (“‘do nothing”). For
small values of a, one crop is found to be the optimal policy. At
a=0-000098, a two crop policy is optimal, whereas for a>0-00014 “do
nothing” is the optimal policy. Along with a risk-neutral DM situation,
two different values of a were chosen to represent the effect of risk aver-
sion of the DM: a=0-00005, and a=0-0001.The recursive equation for
this CL model is given by substitution into equation (8):

J(x, 1) = max E[b(1 — e~ + J(x + dx, ¢ + df)e™%™] (14)

where 7y is the profit gained from time ¢ up to ¢ +d¢, and J(x +d,,t+d¢) is
the optimal value for x +dx from ¢+ d¢ until the end of the planning hor-
izon. At time ¢, the variables 74 and (x + dx) are random and the operator
ET-] is related to them.Bellman’s optimality principle is applicable here.
Consequently, the dynamic programming approach and the convergence
of the optimum algorithm for separate decisions are assured. At a given
point of time ¢, the state variable x(¢) is known with certainty, and a DM
takes the best action regardless of what occurred prior to time ¢. If the
function J(x,?) is concave with respect to the decision variable (u), then the
optimal solution can be found regardless of previous decisions.
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At time ¢+dt, J(x+dx,z+ds) was found for many possible x+dx
values, and a quadratic form was used to obtain a smooth functional form
for all other possibilities that have not been simulated:

J(x + dx, 1 + df) = ag + ay(W + dw) + a2(g + dq) + a3(w + dw)?

15
+ aq(q + dg)? + as(w + dw)(§ + dg). (15)
The expectation part in equation (14) can be approximated by a Taylor’s
series expansion around E[rg] and E[x +dx]. It contains three parts: (i) its
evaluation at the mean of mg and (x +dx); (i) its second derivative with
respect to my multiplied by half of the variance of my4; and (iii) its second
derivative with respect to (x+dx) multiplied by half of the variance of
(x+dx). There is no correlation between 74 and (x +dx). The approx-
imation of equation (14) is:

E[]=b(1 —e™™) + JX +dX, 1 + df)e™™ + d?e " [J(X + dX, 1 + di)

. 1

— b]-0.5Var(mg) + e (a3 V11 + as V2 + asVia) (16)
where V; are elements in the computed variance—covariance matrix of
vector (x+dx). The second derivative of J(x+dx,z+d¢) is easily inter-
preted from the quadratic approximation of J(x-+dx,z+d¢) provided
above.The computation of approximation to the expected value of x, as
well as the variance of 7, are given in Sadeh (1986). To avoid numerical
difficulties, several conditions are set during simulation and optimization.
It is always required that

2 UG — EU@)]} 2 0 (17)

which is satisfied by the assumption of concavity of U(xr). Also, the var-
iance covariance matrix should be positive definite: V;;>0, V5, >0 and
VitVa~Vi2>0.

RESULTS

Seven runs (i—vii) with variation in levels of risk aversion and presence of
feedback are presented in Table 1. Table 1 also contains the optimal
number of crops, the optimal number of crops per growing season, the
optimal values of decision variables, their corresponding shadow prices
and objective values. Values of selected variables on harvest days are
presented in Table 2.
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The decision variables stocking size, stocking density and feeding policy
are at their upper boundary values in all runs. Time of harvest, however,
generally varies between runs. Results therefore, are compared in the
number of crops, the cultivation length of these crops and the corre-
sponding shadow prices of decision variables.

The first optimization run was performed on the current problem with
all random variables assigned to their expected values, with no variance
considered. Under conditions of run (i), one crop was found to be the
optimal solution. The objective value is 6259 utility units and the crop is
cultivated for the entire growing season (33 weeks).

Risk neutral

Under risk neutral assumptions, an OL model was run (ii) and expected
utility is maximized. This particular run results in 4255 utility units and
with decision variables at their boundary level. A positive covariance
between the size and number of shrimp has positive impact on expected
profits, whereas the variance of shrimp size has the opposite impact.
Because the impact of the covariance is greater than the impact of the
variance of size, the optimal harvest day is at the upper bound of the
growing season constraint.

Under the economic conditions stated above, the decision variables
stocking size, stocking density, feeding policy and harvest time have a
positive impact on the general economic performance of one shrimp pond.
Yet, the first three factors contribute less uncertainty than the harvest time
by increasing the cultivation period of shrimp. Therefore, the tendency to
increase output under uncertainty has more pressure towards increasing
stocking size and stocking density of shrimp as it is revealed by the sha-
dow prices.

A risk-neutral DM will take the most risky prospect under the condi-
tions of this run. That is, to have a single crop with the maximum growing
period without additional information or feedback during the growing
period.

When feedback is available a CL model was run (iii) with resulting small
variance—covariance of state variables. Therefore optimal decisions are at
their upper bounds as in run (i). The objective value is higher (6383 utility
units) than in the OL model run (ii). The shadow price of stocking size is
(499-3) smaller than (1456-3) of the OL model run (ii). The opposite holds
for the harvest day. The tendency to produce leads DM more towards
increasing initial size than increasing the cultivation period of a crop.
Under the conditions of run (iii) the uncertainty is much smaller than
uncertainty resulting under run (ii) conditions, and there is more pressure
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towards increasing the growing season. Increasing the growing season is
possible with different technologies such as greenhouses, and consequently
requires more investment.

Low risk aversion

For a DM with risk coefficient a=0-00005, one crop is optimal in both the
OL and CL model runs (iv and v). The one-crop policy resulting from the
OL (iv) is sub optimal to the solution of run (i). Because the crop is
scheduled for only 29-7 weeks rather than the entire growing season of 33
weeks. This change in the scheduling is due to the variance gained in the
last few weeks of the crop and the level of risk aversion.

The solution of CL model run (v) is similar to the run (i) solution. The
expected full information from the four observation days is very close to
conditions of certainty under these run conditions.

A DM under OL model conditions (iv) can produce only one crop in a
growing season, but with 29.7 weeks cultivation period. The contribution
of the information to be gained under CL model conditions (v) allows
DMs to expand the cultivation period from 29-7 to the maximum possible
length of 33 weeks.

The objective value in run (iv) is 78-5 utility units and 252-2 utility units
in run (v). As mentioned above, this is consistent with a priori expecta-
tions. The lower variance and thus longer cultivation period in run (v)
account for the increased utility units. For the risk averse DM, feedback
information enhances utility.

High risk aversion

A DM with risk coefficient a=0-0001 is more risk-averse, and the role of
variance is very crucial. In the OL model run (vii), the DM prefers a two-
crop policy with less variance at the end of each crop than one crop with
higher variance (Table 2). A high risk averse DM cannot bear the uncer-
tainty associated with a single crop and he would rather split the growing
season into two short cultivation periods of about 16 weeks each. Because
the two-crop policy is inefficient under conditions of run (i), the DM is
ready to offset economic efficiency by not bearing uncertainty.

Under the CL model run (vii) the DM prefers a single-crop policy to a
two-crop policy. However, the cultivation period is 2-4 weeks short of the
33 weeks of run (i). The effect of increased variance shortened the length
of the cultivation period.

The shadow price of stocking size is greater in the OL model run (vi)
than in the CL model run (vii). The opposite is true for the shadow price
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of stocking density. The two-crop policy in (vi) does, however, increase the
need for large initial shrimp sizes due to the shorter growth period per
crop. In the case of stocking density, the opposite occurs, due to the length
per crop, the shadow prices of number of shrimp are smaller in run (vi)
than in run (vii).

It is interesting that, in the OL model run (vi), the biomass of shrimp in
a two-crop policy totals to 1291 kg, which is more than the biomass of the
CL model run (vii) (1061 kg) and more than the biomass of run (i)
(1093 kg). The quality of shrimp, however, is judged by size. Shrimp size,
as well as biomass, is an important factor affecting the objective function.
There is a sharp decrease in actual shrimp size upon marketing when the
season is split into two crops (vi). Although, in general, farmers prefer less
product with higher quality, a highly risk-averse DM will give up quality
for less variance.

Value of information

The models developed previously can be used to determine the value of
information concerning the distribution of random variables associated
with shrimp growth and mortality. The methodology of calculating such
values is based on an assumption that although being in a stochastic
environment and not knowing the distributions, a DM repeatedly applies
optimal decisions of a run where only expected values are considered.
Knowledge of the amount that a DM is willing to pay for knowing the
distribution of the random variables may lead to better research and
development programmes, and relevant efforts concerning learning curves
of new industries. It is expected that the attitude of a DM towards risk
and the nature of technology (with and without feedback) will affect the
amount that the DM is willing to pay for information.

In order to determine the effect of lack of feedback information, optimal
decisions from run (i) are applied in a stochastic model, and a path is
simulated. This simulated path gives a scenario of having a stochastic
environment without knowing the distribution behind its random vari-
ables. The difference between sub-optimal results from the simulations
and those obtained by stochastic optimization can be interpreted as the
value of information of knowing the distribution of random variables in a
stochastic environment. This method is a special case of treating a cer-
tainty equivalence model as a case of no uncertainty (Karp et al., 1986).

These differences provide grounds for comparative study. Such a system
allows us to compare the relative losses due to lack of feedback informa-
tion on the state of the random variables. Contrasting relative losses in
both the OL and CL models gives a more accurate picture of the value of
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information than the use of unadjusted objective function values. Results
of this method of information evaluation are found in Table 1 in the col-
umn: simulation of a stochastic run.

There is no loss of utility for a risk-neutral DM in runs (ii) and (iii), as
the decisions he applies in the stochastic OL and CL models are the same
as those in run (i). This is not a general conclusion, but a result for these
particular runs.

For a low risk-averse DM, very small losses do occur by applying opti-
mal decisions of run (i) in the stochastic environment. This is consistent
with a priori expectations, as the differences between the values of the
decision variables under the low-risk producers are very similar to those of
run (i). The slight lengthening of the cultivation period, and thus increased
ending variance under run (i) rules accounts for the utility loss.

Runs for the highly risk-averse DM yield the most interesting results.
When optimal decisions of run (i) are applied in a stochastic environment
without feedback, —30-3 utility units are incurred compared to +32.3
units of run (vi). This relatively large loss is clearly due to the difference
between one-crop and two-crop policies as recommended by run (i) and
run (vi), respectively. The difference, 62-6 utility units, is interpreted as the
amount of utility that a DM is willing to give up for knowing the prob-
ability distribution of random variables in the model.

Using optimal decisions of run (i) in the CL model run with a highly
risk-averse DM results in a slight loss in utility (7-4 =418-0—410-6). The
reason for the low magnitude of this loss is due to the small deviation
between results of run (i) and results of run (vii) as computed for these
particular runs.

Conclusions of the results

As per a priori expectations, the contrast between the OL and CL models is
shown in the increasing objective function values (Table 1) and decreased
variance levels of the state variables under CL model runs with feedback
(Table 2). With respect to OL models, decreased variance in the CL models
leads to a lengthening of the cultivation period for risk-averse DMs. The
decisions relative to time of harvest (TH) varies among the runs (Table 1).

Risk aversion has a strong impact on shrimp aquaculture. The impact of
variance is substantial. Boundary conditions on the length of the growing
season yield positive but rather small shadow prices for a risk-neutral
DM. For a risk-averse DM, the suggested cultivation period is less than
the maximum possible. In preliminary runs of the models, it is found that
under extreme levels of risk aversion (risk coefficients greater than
0-00014) a DM chooses not to produce.
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Under the assumption of a highly risk-averse DM, there is a switch to a
two-crop policy for the OL model run (vi). In this case, the CL model run
(vii) shows a significantly higher value for the objective function. This is
due to the high concavity of the utility function and the massive reduction
in variance in the CL model runs with feedback.

Shrimp quality also has an impact on decision making under uncer-
tainty. It was found that a DM agrees to bear more risk in order to have a
better quality product. For example, in the one-crop scenario (Table 2; vii)
individual marketable shrimp are 26-5 g and the total marketable biomass
1061 kg vs. 13-5 or 13 g marketable shrimp and 1291 kg marketable bio-
mass in a two-crop scenario (vi).

Simulation of optimal decisions from run (i) in a stochastic environment
reflects the value of knowledge of the system’s probability distribution of
random variables. The findings show that the DM’s willingness to pay for
information on the random variables corresponds to his level of risk aver-
sion. Major differences, however, came through different policies rather
than through different tactical decisions, e.g. differences in time of harvest.

SUMMARY

The model was developed as a tool to encompass operational and man-
agement decisions in agricultural systems under conditions of uncertainty.
A DM facing production uncertainty over time has the alternative to
update decisions as information is gathered over time. The case study is
shrimp aquaculture, but with appropriate modifications it can be applied
to different disciplines in agriculture.

The model is applied for five decision points of time in this case study.
Increasing the number of decision points of time is easily applicable with
moderate increase of computation time for relevant problems.

An economic interpretation of the results is attractive and possible due
to the mathematical programming formulation of the model. The results
are quantified in terms of utility units. It is found that a risk-averse DM
tends to split production processes in order to avoid uncertainty. In
shrimp aquaculture this means increasing the number of crops per grow-
ing season and shortening the cultivation period of each crop. A run with
random variables at their expected values provides the ground for optimal
riskless decisions. The difference in optimal decisions between the various
risk-averse DMs with respect to that run’s results means that some DMs
may be inefficient and therefore may not enter the shrimp industry.

The information gathered as the production process proceeds is eval-
uated. The implications of the value of feedback information can be used
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in evaluating possible investments in agriculture. An individual DM will-
ing to pay money or to give up utility units for knowing the distributions
of random variables associated with agricultural production processes,
may lead to better research and development programmes and relevant
efforts concerning learning curves of agricultural industries.
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